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ABSTRACT: The human immune system detects potentially pathogenic microbes with receptors that respond to microbial
metabolites. While the overall immune signaling pathway is known in considerable detail, the initial molecular signals, the
microbially produced immunogens, for important diseases like Lyme disease (LD) are often not well-defined. The immunogens for
LD are produced by the spirochete Borrelia burgdorferi, and a galactoglycerolipid (1) has been identified as a key trigger for the
inflammatory immune response that characterizes LD. This report corrects the original structural assignment of 1 to 3, a change of
an a-galactopyranose to an a-galactofuranose headgroup. The seemingly small change has important implications for the diagnosis,

prevention, and treatment of LD.

ddressing the diagnostic and therapeutic challenges of
Lyme disease (LD), the most common vector-borne
disease in the US, requires a better understanding of its
etiology.' > LD is characterized by dysregulated immune
responses to bacteria introduced by tick vectors. Typically, a
female tick (Ixodes scapularis) releases bacteria (Borrelia
burgdorferi) from her saliva into the human host during a
blood meal. LD initially presents as an inflammatory response,
characteristically as a red ring (erythema migrans) around the
meal site about a week after feeding. Other symptoms can
include fever, headache, and fa’tigue.3 Diagnosis is largely
through symptoms, and while most cases respond favorably to
antibiotic treatment, Iong-term aut01mmune like symptoms
persist in a significant mlnonty
LD’s link to inflammatory immune responses led to a search
for the responsible immunogen(s) from B. burgdorferi (Bb).
Over the past several decades, two different classes of
immunogens have been investigated: (1) lipid-bearing small
proteins from the bacterial membrane called outer surface
proteins (Osp) with OspA as the primary suspect, and (2)
glycoglycerolipids with no associated protein and with BbGL-II
(Bb glycolipid II, 1) as the main suspect. The Osp family has
been the basis of several vaccine efforts, and Lymerix, a
recombinant OspA vaccine, was approved for humans in 1998
but withdrawn in 2002."* There are no human LD vaccines
currently available, but efforts based on lipoproteins—mixtures
of naturally occurring ones as well as engineered ones—are
continuing. ’ 14-6
Studies on lipid immunogens from Bb have led to confusing
results. A German lab specializing in diagnostic analysis of
spirochete infections (LD and syphilis) regularly noted a low
molecular weight antigen (<10 kDa) that reacted with sera
from LD but not syphilis patients.” Further studies identified
the antigen as a glycoglycerolipid with a galactose headgroup
and two acyl chains.” This initial study was followed up by a
more detailed study, which resulted in a complete structural
characterization of the antigenic glycolipid as 1-oleoyl-2-
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palmitoyl-3-(a-p-galactosyl)-sn- glycerol (1), which entered
the literature as BbGL-II (Figure 1).® For the past 20 years,
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Figure 1. Structures of galactoglycerolipids (1-3).
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BbGL-II has dominated research on lipid antigens for LD.
Three studies are especially informative.” ' Kinjo et al.
convincingly demonstrated the ability of glycolipids, including
isolates from Bb to induce natural killer T (NKT) cell
proliferation and cytokine production.” However, in vivo
studies showed that synthetic 1 was no better than media
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control at activating NKT cells.” Pozsgay et al. explored the
synthesis of analogs of 1 and noted that synthetic 1 induced
IL-2 production at levels “barely above baseline”—significantly
less than some analogs.'' Reinink et al. investigated the
possibility that 1 needs an auxiliary protein (Cd1b, cluster of
differentiation 1b) to present 1 to immune cells.'” This study
showed that while Cd1b did present 1 to human T cells and
that the recognition required an alpha beta T cell receptor, 1
was not essential—immune responses with and without it were
the same.'® The authors concluded with the important insight
that Cdlb’s effects were likely due to its presentation of
diacylglycerols that were self-antigens.'’

These, and other, observations indicate that 1 is not the
relevant Bb immunogen. Reviewing the original analysis
suggested that the incorrect form had been assigned to the
galactose headgroup. While human glycolipids typically feature
galactopyranose, bacteria typically incorporate galactofura-
nose.''~'* The synthase in Bb that adds galactose to a
diacylglyceride, bbMGS, has been identified, but the analysis
does not distinguish the form added.'* We pursued two
independent but complementary paths: synthesizing candidate
galactoglycerolipids and identifying the immunogenic lipid
from Bb cultures.

Our model could be tested by assaying three molecules: the
original a-pyranose structure, a-Galp-BbGL-II (1), along with
two galactofuranoses, -Galf-BbGL-1II (2) and a-Galf-BbGL-II
(3) (Figure 1). Compound 1 is commercially available, and the
synthesis of 2 and 3 followed the standard route outlined in
Scheme 1. To produce both anomers of the desired

Scheme 1. Synthesis of 2 and 3“
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“Reagents and conditions: (a) TMSI, 4 A mol. sieve, 15 min, 0 °C;
(b) DIPEA, (S)-(+)-solketal, 3h, rt; (c) TFA/water/DCM, 10 min, rt
(for B-anomer (2a): 78%, for a-anomer (3a): 7.5%); (d) Oleoyl
chloride, 2,4,6-Collidine, DCM, 1h, —78 °C (for fB-anomer (2b):
47%, for a-anomer (3b): 28%); (e) Palmitic acid, DCC, DMAP,
DCM, rt, o/n (for f-anomer (2c): 52%, for a-anomer (3c): 85%); (£)
TBAF, THF, rt, o/n, (for f-anomer (2): 14%, for a-anomer (3):
18%).

galactofuranoses in one reaction, we used the nonstereospecific
TMSI promoted glycosylation of penta-TBS protected f-p-
galactofuranose with (S)-(+)-solketal, followed by selective
deprotection of the ketal, and chromatographic separation of
the anomers to obtain compounds 2a and 3a (Scheme 1).1617
Regiospecific esterification at the sn-1 position of 2a and 3a
with oleoyl chloride gave compounds 2b and 3b and an
additional esterification at their sn-2 positions with palmitic
acid via the Steglich procedure yielded compounds 2¢ and 3¢
(Scheme 1). Deprotection of the TBS groups with TBAF and
extensive purification by NP- and RP-chromatography gave the
final compounds f-Galf-BbGL-II (2) and a-Galf-BbGL-II (3)
in four steps (Scheme 1). Distinguishing galactofuranose
anomers 2 and 3 is accomplished by comparing the*J-coupling
constant and shift of the anomeric H-1" protons (Figure S19).

For f-Galf-BbGL-II (2), H-1’ appears at S5.02 ppm as a
singlet'® whereas H-1' of a-Galf-BbGL-II (3) appears at 4.93
ppm as a doublet (}] = 4.8 Hz). Identification of the ring forms
can be made, most reliably, by analyzing the *C-shift values of
C-2/,C-3', and C-4’ (Figure S20). In the galactopyranose form
of a-Galp-BbGL-II (1), all of these signals appear between 69.5
and 71.0 ppm; the same carbons resonate at significantly
higher values of 76.2 ppm (C-3’), 78.1 ppm (C-2'), and 83.4
ppm (C-4') for the galactofuranose a-Galf-BbGL-II (3).

Compounds 1—3 were tested in an inflammatory assay:
TNF-o release from murine bone marrow dendritic cells
(mBMDC).'® Results are shown in Figure 2a and 2b.
Compounds 1 and 2 have no detectable activity while
compound 3 with its a-galactofuranose headgroup had an
ECq, of 15 yuM.
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Figure 2. Proinflammatory activities and HPLC-MS chromatogram of
1-3. (a) TNF-a induction activities of 1—-3 (66 gM) in mBMDCs
and (b) dose—response curve of 3. No detectable activity from 1 and
2. (c) HPLC-MS chromatogram of 1, 3, and active lipid fraction of B.
burgdorferi (Bb). Extracted ion value was m/z 757.

As an independent check, we compared compounds 1, 2,
and 3 with the active lipid fraction from Bb cultures. Borrelia
burgdorferi B31 (ATCC 35210), a fastidious microaerobic
Gram-negative, was cultured in BSK-H media, and the cell
pellet extract (CHCl;/MeOH) was partially purified. The
active fraction (TNF-a production) was analyzed by HPLC-
MS (Figure 2c). The Bb active extract had a large peak
corresponding to 3, while 1 and 2 were clearly different. The
stark differences between 1, 2, and 3 in functional analyses
contrast with the miniscule variations seen in spectroscopic
analyses. For example, the '"H NMR spectra of 1, 2, and 3 are
similar enough that a de novo structure determination of any
one of them would be challenging in the absence of authentic
synthetic samples (Table 1, Supporting Information).®

While a plausible retaining galactosyl transferase by which
Bb could install an a-galactose has been identified, no obvious
candidates for the mutase needed to convert the thermody-
namically favored galactopyranose to galactofuranose could be
identified in the published Bb genome. A variation on the Syi
transferase mechanism could provide a solution.'”*° The
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mutase and transferase functions could be combined in a single
enzyme using a bridged intermediate from a first inversion at
C1 via attack by the C4 hydroxyl to displace the UDP leaving
group, and a second inversion in which the sn-3 hydroxyl of a
diacylglycerol displaces the C4 hydroxyl attached to Cl
(Figure S30). The combination would convert the pyranose to
a furanose with a retaining transfer.

The identification and synthesis of Bb’s immunogenic lipid
prompted an investigation into its receptor target. The toll-like
receptors TLR2 and TLR4, members of the innate immune
system, were the most likely.”' These receptors are widely
distributed on sentinel cells like macrophages and dendritic
cells and recognize structurally conserved molecular features
associated with microbes.”’ They link the innate immune
system to the adaptive immune system through the release of
cytokines like TNF-a. We distinguished which TLR was
responsible by using mBMDCs from mice with genetic
knockouts, ##2~/~ and tlr4~/~ mice, in the cytokine induction
assay (Figure 3).'® Cells lacking TLR2 did not respond to 3,
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Figure 3. TNF-a production of 3 in mBMDC assay from tlr2~/~ and
tlr4~/~ mice.

while those lacking TLR4 showed a robust response. TLR2 is
the canonical receptor for di- and triacylpeptide ligands, so this
is the expected result.”’ ~>*

The results presented here make a convincing case that a-
Galf-BbGL-II (3), not a-Galp-BbGL-II (1), is the innate
immunogen reported by earlier researchers. While the
structural correction is minor, immune receptors like TLR2
are exquisitely sensitive to molecular structure. Bacterial lipids,
especially membrane lipids, provide highly informative
molecular ID tags of their producers.”*® Their distinctive
structures and compositions reflect both the evolutionary
history and current lifestyle of their producer.”* In addition to
their distinguishing characteristics, membrane lipids are both
essential and readily accessible, especially in the case of Gram-
negative bacteria like Bb that release outer membrane vesicles
(OMV).>”*® While their 9potential as immunogens is known, it
is often overlooked.””” The tendency to downgrade the
importance of lipid immunogens, coupled with the mis-
identification of 1 some 20 years ago, has led to a garbled
understanding of LD etiology and misguided vaccine develop-
ment efforts. Identifying 3 as the relevant immunogen could
redirect prevention and therapeutic efforts for LD and possibly
guide the search for self-antigens that might be responsible for
post-treatment LD syndrome (PTLDS) and other tick-borne
diseases.”*>'**" Finally, this correction has potential implica-
tions for other systems in which bacterially produced
galactolipids activate human immune responses.>"*>
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